litbook

Издательство «Альпина нон-фикшн»


Время живых машин. Биологическая революция в технологиях0

Я познакомилась с Энджи Белчер в начале своего пребывания на посту президента МТИ. В тот период мне предстояло быстро вникнуть в новую работу. Мне нужно было понять, как МТИ поддерживает развитие нестандартных идей и как эти идеи с потрясающей быстротой выходят на рынок.

Чтобы узнать как можно больше в сжатые сроки, я приглашала маленькие группы недавно получивших постоянную должность преподавателей на завтраки. Чтобы быть зачисленными в штат МТИ, преподаватели должны были достичь чего-то, чего ранее никто не добивался, и я была уверена, что те, кого я приглашаю на завтрак, смогут описать магическое соединение ресурсов, людей и духа, которое позволило каждому из них одержать победу. Что сделало МТИ особенным для них и как мы можем сделать его еще лучше? К каким еще захватывающим новым рубежам они стремятся?

Среди изобилия закусок — кофе, яиц и выпечки — я просила рассказать, что им больше всего нравится в МТИ и что больше всего будоражит их в исследованиях и преподавании. Когда беседа всех захватывала, участники начинали рассказывать свою историю, и каждая оказывалась еще более потрясающей, чем предыдущая. Я видела себя в будущем, которого раньше и не могла представить. Они говорили о том, как квантовая вычислительная техника переходит от теории к практике, как наночастицы, доставляющие лекарства в ткани, создаются слой за слоем словно крошечные вечные леденцы с шоколадной фабрики Вилли Вонки, и о десятках других гениальных открытий и изобретений. Слушая их, я сделала удивительное наблюдение: если бы мне нужно было по их рассказам установить, к какому отделению или факультету относятся преподаватели, это могло стать трудной задачей. Их исследования, не спрашивая разрешения и не делая громких заявлений, размывали границы между дисциплинами, и я поняла, что именно эта гибкость является критически важной для того, чтобы новые идеи быстро попали из лаборатории на рынок.

Многие из молодых преподавателей балансировали на стыке совершенно несопоставимых дисциплин. Среди них была и Белчер, которую я сразу определила как живой пример соединения наук. Помимо своей работы с группой, занимающейся биомолекулярными материалами и Энергетической инициативой МТИ, она принимала участие в деятельности отделения материаловедения и инженерного дела, отделения биоинженерии и Института интегративных исследований рака имени Дэвида Кока. Однажды Анджела сказала мне, что пытается свести вместе биологию и инженерное дело, чтобы создать новое поколение электронных приборов, и у меня глаза расширились от удивления. Белчер объяснила, что в будущем получение, распределение и сохранение энергии могут выглядеть совсем по-другому по сравнению с тем, как мы это делаем сейчас.

Впервые идея о новом поколении биологически созданных электронных приспособлений пришла ей в голову в 1990-е гг., когда Анджела занималась исследованиями перед получением степени PhD по химии в Университете Калифорнии в Санта-Барбаре. Ее всегда завораживала способность природы находить решения в ответ на трудности и возможности, даваемые окружающей средой. Во время постдипломного обучения Анджела была просто одержима галиотисами — крупными морскими моллюсками, которые обитают вдоль берегов Тихого океана, — и тем, как они делают свои раковины. Этот процесс, как выяснилось, включает в себя принципы биоинженерии, подтолкнувшие Белчер к мысли о самых различных практических применениях, в том числе и об аккумуляторах.

С точки зрения эволюции галиотисы решили очень сложную проблему: как создать легкую, но очень прочную раковину, используя только простые, широко доступные компоненты. Они выработали остроумное и элегантное решение. Соединить кальций (Ca) и карбонат (СО3) — материалы, широко распространенные в океане, — чтобы получился карбонат кальция (CaCO3) — имеющийся в изобилии минерал, кусочками которого мы обычно пишем по классной доске. Сам по себе мел — мягкий материал, который легко крошится, но галиотисы справляются с этой проблемой с помощью двухэтапного «процесса производства». Для начала молекулы CaCO3 размещаются в определенном порядке, формируя маленькие кристаллы. Эти кристаллы гораздо прочнее мела, но имеют всего 1/3 000 прочности раковины галиотиса. «Крепость стали» придается им с помощью процесса, который помогла открыть Белчер во время своих исследований в аспирантуре: создаются маленькие нити белка, размещенные между кристаллами. Таким образом, получается что-то вроде клейкой сетки, работающей в некотором роде как раствор, удерживающий вместе «кирпичи в стене». Но, в отличие от раствора, материал, скрепляющий раковину галиотиса, является в какой-то мере эластичным, поэтому структура растягивается и не ломается. Прочное, но растяжимое кружево белковых нитей переплетается с кристаллами карбоната кальция, придавая раковине галиотиса необыкновенную динамическую прочность. Раковины защищают галиотисов, пока они живы, а после их смерти разрушаются, пополняя ресурсы для следующего поколения моллюсков, и все это не загрязняет окружающую среду никакими токсичными отходами.

В кабинете Белчер целая коллекция раковин галиотисов, и каждый раз, заглядывая к ней, я просто глаз не могла от них оторвать. Они очень красивые. Вместе они напоминают набор разобранных матрешек: от очаровательных малышек, имеющих размер не больше ногтя моего большого пальца, до раковин больше открытой ладони — им, возможно, более 10 лет. Однажды, когда мы говорили о биологических процессах, в результате которых великолепные материалы получаются из самых обыкновенных элементов, я не смогла устоять — взяла одну из самых больших раковин размером с детскую бейсбольную перчатку и провела пальцами по гладкой внутренней поверхности. Когда я поднесла ее к свету, она засверкала всеми цветами радуги.

Галиотис может прожить до 50 лет. Независимо от размера каждая раковина имеет одну и ту же форму, цвет и текстуру: шершавую снаружи и глянцевую, перламутровую изнутри. Каждая украшена изящной аркой из находящихся на равном расстоянии друг от друга отверстий, через которые животное «дышит». Это шедевр биоинженерии, и, начав изучать формирование раковины, Белчер задалась вопросом: если ДНК галиотиса содержит код, позволяющий белкам так эффективно собирать морские элементы, чтобы создавать ракушки, то, возможно, мы сможем отдавать приказы ДНК других организмов, чтобы собирать другие элементы и выполнять другую работу. Если это так, то не получится ли, как она предлагала в первой заявке на грант, заставить вирусы собирать элементы, использующиеся в полупроводниках, такие как арсенид галлия и кремний, и создавать электронные компоненты? И если это можно сделать, какие более масштабные задачи реально было бы решить с помощью вирусов? Могла бы Белчер использовать их, чтобы организовать компоненты аккумулятора? Ее инженерный ум работал все активнее, обдумывая различные способы применения. «Если галиотисы могли миллионы лет создавать все эти раковины, не выделяя токсичных веществ, — так рассказывала мне Анджела о своем моменте озарения, — почему бы людям не делать все, что им нужно, не загрязняя окружающую среду?»

В детстве Белчер любила скалы, растения и животных родного Техаса, а потом, во время учебы в колледже в Санта-Барбаре, штат Калифорния, полюбила и берега Тихого океана. Как химик и специалист по материаловедению она находила бесконечно прекрасным и таинственным все то разнообразие форм и размеров, в которые природа облекает имеющиеся у нее в распоряжении вещества. На полках в ее кабинете лежали раковины, кристаллы и окаменелости, причем у каждого из них была история, которую она в волнении мне рассказывала. Однажды, сжимая в одной руке красивый кристалл, а в другой — ничем не выделяющийся кусок белого камня, Анджела воскликнула: «Эти блестящие бирюзовые кристаллы имеют тот же состав, что и кусок арагонита!» Она не переставала восхищаться тем, что природа может сделать, и одновременно думала, как улучшить наш общий дом для следующего поколения.

Мы с вами, возможно, не проводим много времени в размышлениях о том, насколько упорядочены молекулы в веществах, которые нас окружают, и как они организованы в тех предметах, которыми мы пользуемся каждый день. Но Энджи Белчер об этом думает. Ее дипломная работа дала ей понять значимость того, из чего материалы состоят, и того, как они организованы. Анджела доказала, что раковина галиотиса состоит из карбоната кальция, связанного вместе минимальным количеством раствора, который моллюск изготавливает из особого белка. Разработка новых аккумуляторов опирается на то, чтобы найти оптимальные материалы и организовать их в наилучшем порядке. Но совершенствование состава и организация материала требуют достаточно изысканного инженерного мастерства. Именно это и пришло Белчер в голову в момент озарения, подтолкнувшего к подаче заявки на грант. Вместо того чтобы целиком положиться на человеческий разум, который мог бы изменить компоненты батарей, исследовательница начала задаваться вопросом, не сможет ли она создать аккумулятор получше, доверив вирусам организацию материала для нас.

Рейтинг:

0
Отдав голос за данное произведение, Вы оказываете влияние на его общий рейтинг, а также на рейтинг издательства опубликовавшего этот текст.
Только зарегистрированные пользователи могут голосовать
Зарегистрируйтесь или войдите
для того чтобы оставлять комментарии
Лучшее:
  • поэзия
    1. Деревянный фрегат +3
    Александр Мурашов
    Слово\Word, №123
  • культура (история, литературоведение, мнение, публицистика, воспоминания)
    2. Mуза и маузер +1
    Самуил Кур
    Семь искусств, №5
Регистрация для авторов
В сообществе уже 1132 автора
Войти
Регистрация
О проекте
Правила
Все авторские права на произведения
сохранены за авторами и издателями.
По вопросам: support@litbook.ru
Разработка: goldapp.ru